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Using the method of asymptotics beyond all orders, we evaluate the amplitude of radiation from a moving
small-amplitude soliton in the discrete nonlinear Schrödinger equation. When the nonlinearity is of the cubic
type, this amplitude is shown to be nonzero for all velocities and therefore small-amplitude solitons moving
without emitting radiation do not exist. In the case of a saturable nonlinearity, on the other hand, the radiation
is found to be completely suppressed when the soliton moves at one of certain isolated “sliding velocities.” We
show that a discrete soliton moving at a general speed will experience radiative deceleration until it either stops
and remains pinned to the lattice or—in the saturable case—locks, metastably, onto one of the sliding veloci-
ties. When the soliton’s amplitude is small, however, this deceleration is extremely slow; hence, despite losing
energy to radiation, the discrete soliton may spend an exponentially long time traveling with virtually un-
changed amplitude and speed.
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I. INTRODUCTION

This paper deals with moving solitons of the discrete non-
linear Schrödinger �DNLS� equation. The earliest applica-
tions of the cubic DNLS equation were to the self-trapping
of electrons in lattices �the polaron problem� and energy
transfer in biological chains �Davydov solitons�—see the re-
views in �1–3� for references. Relatedly, the equation arises
in the description of small-amplitude breathers in Frenkel-
Kontorova chains with weak coupling �1�. In optics the equa-
tion describes light-pulse propagation in nonlinear wave-
guide arrays in the tight-binding limit �4,5�. Most recently
the DNLS has been used to model Bose-Einstein conden-
sates in optically induced lattices �6�.

The question of the existence of moving solitons in the
DNLS equation has been the subject of debate for some time
�7–19�. Recently, Gómez-Gardeñes et al. �20,21� have dem-
onstrated that the stationary motion of pulses in the cubic
one-site DNLS �the “standard” DNLS� is only possible over
an oscillatory background consisting of a superposition of
plane waves. This result was obtained by numerical continu-
ation of the moving Ablowitz-Ladik breather with two com-
mensurate time scales. In our present paper, we study the
traveling discrete solitons analytically and independently of
any reference models. Consistently with the conclusions of
�20,21�, we will show that solitons cannot freely move in the
cubic DNLS equation; they emit radiation, decelerate, and
eventually become pinned by the lattice. We shall show,
however, that this radiation is exponentially small in the soli-
ton’s amplitude, so that broad, small-amplitude pulses are
highly mobile and are for all practical purposes indistin-
guishable from freely moving solitons.

In the context of optical waveguide arrays—important not
only in themselves but also as a first step to understanding
more complicated optical systems such as photonic
crystals—interest among experimentalists �22–24� has re-

cently shifted away from media with pure-Kerr nonlinearity
�which gives rise to a cubic term in the DNLS equation� and
towards photorefractive media, which exhibit a saturable
nonlinearity �25–29�. In practice such arrays may be opti-
cally induced in a photorefractive material �22,23� or fabri-
cated permanently—see �24�, for example. The study of soli-
tons in continuous optical systems with saturable
nonlinearitites has a long history; interesting phenomena
here include bistability �30,31�, fusion �32�, and radiation
effects �33� which do not arise in the cubic equation. As for
the discrete case, the work of Khare et al. �34� suggests that
the saturable one-site DNLS may be exceptional in the sense
of Ref. �35�; that is, despite not being a translation invariant
system, it supports translationally invariant stationary soli-
tons. This property is usually seen as a prerequisite for un-
damped motion in discrete equations �see, e.g., �36��, and
indeed, the numerical experiments of Vicencio and Johans-
son �29� have revealed that soliton mobility is enhanced in
the saturable DNLS equation.

The DNLS equation with a saturable nonlinearity is the
second object of our analysis here; our conclusions will turn
out to be in agreement with the numerical observations of
Ref. �29�. We will show that for nonlinearities which saturate
at a low enough intensity, solitons can slide—that is, move
without radiative deceleration—at certain isolated velocities.
These “sliding” solitons are examples of embedded solitons.

The usual saturable DNLS equation is the discrete form of
the Vinetskii-Kukhtarev model �37�:

i�̇n + �n+1 − 2�n + �n−1 − �
1

1 + ��n�2
�n = 0. �1�

In order to encompass both cubic and saturable nonlinearities
in a single model, we shall instead consider the equation

i�̇n + �n+1 + �n−1 +
2��n�2

1 + ���n�2
�n = 0, �2�

obtained from Eq. �1� by making the transformation �n

=�2/� e−i�2+��t�n and letting �=2/�. In the form above,
1 /� represents the saturation threshold of the medium �31�,
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which tends to infinity as one approaches the pure Kerr �cu-
bic� case of �=0. The higher the value of �, the lower is the
intensity at which the nonlinearity saturates.

This paper is structured in the following way. In Sec. II,
we construct a small-amplitude, broad traveling pulse as an
asymptotic series in powers of �, its amplitude. The velocity
and frequency of this soliton are obtained as explicit func-
tions of � and its carrier-wave wavenumber. Then in Sec. III,
the main section of this paper, we derive an expression for
the soliton’s radiation tails and measure their amplitude us-
ing the method of asymptotics beyond all orders. In Sec. IV,
we investigate the influence of this exponentially weak ra-
diation on the soliton’s amplitude and speed. Finally, in Sec.
V, we summarize our work and make comparisons with some
earlier results.

II. ASYMPTOTIC EXPANSION

A. Leading order

We begin by seeking solutions of the form

�n�t� = ��X�eikn+i�t, �3�

where

X = � �n − vt� �4�

and � is a parameter. By analogy with the soliton of the
continuous NLS equation, we expect the discrete soliton to
be uniquely characterized by two parameters—e.g., � and
k—while the other two �� and v� are expected to be express-
ible through � and k. Substituting the ansatz �3� with Eq. �4�
into Eq. �2� gives a differential advance-delay equation

��X + ��eik + ��X − ��e−ik − ���X� − i� v���X�

+
2���X��2

1 + ����X��2
��X� = 0. �5�

This can be written as an ordinary differential equation of an
infinite order:

eik�
n=0

�

�n 1

n!
��n� + e−ik�

n=0

�

�n �− 1�n

n!
��n� − �� − i� v��

+
2���2

1 + ����2
� = 0, �6�

where ��n�=dn� /dXn.
From now on we assume that � is small. Our aim in this

section is to find an approximate solution to Eq. �6�—and
hence Eq. �2�—with �=O���. �That is, we are looking for
small, broad pulses which modulate a periodic carrier wave.�
To this end, we expand �, �, and v as power series in �:

� = ���0 + ��1 + ¯ � , �7a�

� = �0 + �2�2 + ¯ , �7b�

v = v0 + �2v2 + ¯ . �7c�

�We are not expanding k as we consider it, along with �, as
one of the two independent parameters characterizing our

solution.� Substituting these expansions into Eq. �6� gives a
hierarchy of equations to be satisfied at each power of � by
choosing �n and vn properly. In nonlinear oscillations, this
perturbation procedure is known as Lindstedt’s method �38�.

At the order �1 we obtain

�0 = 2 cos k , �8�

while the order �2 gives

v0 = 2 sin k . �9�

These two relations correspond to the dispersion of linear
waves. At the power �3 we obtain the following nonlinear
equation for �0:

cos k �0� − �2�0 + 2��0�2�0 = 0.

This is the stationary form of the NLS equation, which has
the homoclinic solution

�0 = a�cos k sech�aX� ,

with

a2 =
�2

cos k
.

Returning to the original variable �, we note that the ampli-
tude a can always be absorbed into �, the parameter in Eq.
�4�, and in front of �0 in Eq. �7a�. That is, there is no loss of
generality in setting a=1 and letting � describe the amplitude
�and inverse width� of the pulse instead. This allows us to set

�2 = cos k . �10�

Note that the coefficients in Eq. �5� are periodic functions
of the parameter k with period 2	; therefore, it is sufficient
to consider k in the interval �−	 ,	�. Also, Eq. �5� is invari-
ant with respect to the transformation k→−k, �→−�, v→
−v; hence, it is sufficient to consider positive k only. Finally,
our perturbative solution does not exist if cos k is negative.
Thus, from now on we shall assume that 0
k
	 /2.

B. Higher orders

At the order �n+3, where n�1, we arrive at the following
equations for the real and imaginary parts of �n:

L1 Re �n =
Re fn−1�X�

cos k
, �11a�

L0 Im �n =
Im fn−1�X�

cos k
, �11b�

where

L0 = − d2/dX2 + 1 − 2 sech2 X ,

L1 = − d2/dX2 + 1 − 6 sech2 X ,

and

O. F. OXTOBY AND I. V. BARASHENKOV PHYSICAL REVIEW E 76, 036603 �2007�

036603-2



fn−1�X� = �
j=1

�n/2� � 2 cos k

�2j + 2�!
�n−2j

�2j+2� − �2j+2�n−2j	 + i �
j=1

��n+1�/2� � 2 sin k

�2j + 1�!
�n−2j+1

�2j+1� − v2j�n−2j+1� 	 + �
m=1

n−1

2�0��m�n−m
* − �n−m�m

* �

+ �
m=1

n−1

�
�=0

n−1−m

2�n−m−��m��
* + ��

m=0

n−1

�
�=0

n−1−m 
 �
j=1

��n−m−��/2� �2 cos k

�2j�!
�n−m−�−2j

�2j� − �2j�n−m−�−2j	
+ i �

j=1

��n−m−�−1�/2� � 2 sin k

�2j + 1�!
�n−m−�−2j−1

�2j+1� − v2j�n−m−�−2j−1� 	��m��
*. �12�

The linear nonhomogeneous ordinary differential equations
�11� must be solved subject to a boundedness condition.

The bounded homogeneous solutions of Eqs. �11a� and
�11b� �sech X tanh X and sech X, respectively� correspond to
the translation and U�1� invariances of Eq. �5�. Including
these zero modes in the full solution of Eqs. �11� would
amount just to the translation of ��X� by a constant distance
in X and its multiplication by a constant phase factor. These
deformations are trivial, and hence we can safely discard the
homogeneous solutions at each order of �.

As �0’s real part is even and its imaginary part is odd
�zero�, �1’s real and imaginary parts are also even and odd,
respectively. The same holds, by induction, to all orders of
the perturbation theory. Indeed, assume that �0 ,�1 , . . . ,�n−1
have even real parts and odd imaginary parts. Then it is not
difficult to verify that the function Re fn−1�X� is even and
Im fn−1�X� is odd. Since the operators L0 and L1 are parity
preserving and since we have excluded the corresponding
homogeneous solutions, this means that �n has an even real
part and an odd imaginary part. Finally, the homogeneous
solution of Eq. �11b� being even and that of Eq. �11a� being
odd, the corresponding solvability conditions are satisfied at
any order.

Note that since the solvability conditions do not impose
any constraints on vn and �n, the coefficients vn with n�2
and �n with n�4 can be chosen completely arbitrarily.

C. Explicit perturbative solution to order �3

Solving Eqs. �11� successively, we can obtain the discrete
soliton �7a� to any desired accuracy. Here, we restrict our-
selves to corrections up to the cubic power in �. The order �3

is the lowest order at which the saturation parameter � ap-
pears in the solution. On the other hand, it is high enough to
exemplify and motivate our choice of the coefficients in Eqs.
�7b� and �7c�.

Letting n=1 in Eq. �12�, we have

f0�X� =
2i

3!
sin k�0� − iv2�0�.

The corresponding solution of Eq. �11� is

�1 =
i

�cos k

1

2
sin k sech X tanh X

+
1

2
�v2 −

1

3
sin k	X sech X� .

Here the term proportional to X sech X decays to zero as
�X�→�; however, it becomes greater than �0�X� for suffi-
ciently large �X�, leading to nonuniformity of the expansion
�7a�. In order to obtain a uniform expansion, the term in
question should be eliminated. Being free to choose the co-
efficients vn with n�2, we use this freedom to set

v2 =
1

3
sin k .

This leaves us with

�1 =
i

2
�cos k tan k sech X tanh X .

After “distilling” in a similar way the correction �2, where
we fix

�4 =
1

12
cos k

to eliminate a term proportional to X sech X, we obtain

� = ��cos k�sech X +
i

2
� tan k sech X tanh X

+
1

12
�2
4 sech3 X − 3 sech X +

1

2
tan2 k�14 sech3 X

− 13 sech X� + 4� cos k�2 sech X − sech3 X�� + O��3� ,

�13�

where

� = 2
1 +
1

2!
�2 +

1

4!
�4 + O��6��cos k , �14a�

v = 2
1 +
1

3!
�2 + O��4��sin k . �14b�
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D. Velocity and frequency of the discrete soliton

In the previous subsection we have shown that fixing suit-
ably the coefficients �n and vn can lead to a uniform expan-
sion of � to order �3. Our approach was based on solving for
�n explicitly and then setting the coefficients in front of the
“secular” terms X sech X to zero. Here, we show that the
secular terms can be eliminated to all orders—and without
appealing to explicit solutions.

Assume that the secular terms have been suppressed in all
nonhomogeneous solutions �m with m up to n−1; that is, let

�m�X� → CmeX + o�eX� as X → − �

�m = 0,1, . . . ,n − 1� . �15�

�Since we know that the real part of �m is even and the
imaginary part odd, it is sufficient to consider the asymptotic
behavior at one infinity only.� The constant Cm may happen
to be zero for some m in which case the decay of �m will be
faster than eX. Our objective is to choose �n and vn in such a
way that �n�X� will also satisfy �15�. To this end, we con-
sider the function �12�. All terms which are trilinear in
�0 , . . . ,�n−1 and derivatives of these functions decay as e3X

or faster; these terms in fn−1 cannot give rise to the secular
terms proportional to X sech X in �n. On the other hand, the
terms making up the first line in �12� tend to

eX �
j=1

�n/2� 
 2 cos k

�2j + 2�!
− �2j+2�Cn−2j

+ ieX �
j=1

��n+1/2�� 
 2 sin k

�2j + 1�!
− v2j�Cn−2j+1

as X→−�. These are “asymptotically resonant” terms—in
the sense that their asymptotics are proportional to the as-
ymptotics of the homogeneous solutions of Eqs. �11a� and
�11b�. It is these terms on the right-hand sides of Eqs. �11a�
and �11b� that give rise to the secular terms in the solution
�n. The resonant terms will be suppressed if we let

�2j+2 =
2 cos k

�2j + 2�!
, v2j =

2 sin k

�2j + 1�!
, j � 1. �16�

After the resonant terms have been eliminated, the bounded
solution to Eqs. �11� will have the asymptotic behavior �n
→CneX as X→−�. By induction, this result extends to all
n�0.

Substituting Eqs. �16�, together with Eqs. �8�–�10�, into
Eqs. �7b� and �7c�, and summing up the series, we obtain

� = 2 cos k cosh �, v = 2 sin k
sinh �

�
, �17�

the frequency and velocity of the discrete soliton param-
etrized in terms of k and �.

Equations �17� coincide with the expressions �39� of the
Ablowitz-Ladik soliton’s velocity and frequency in terms of
its amplitude and wavenumber. The difference between the
two sets of answers is in that Eqs. �17� pertain to small-
amplitude solitons only, whereas Ablowitz and Ladik’s for-
mulas are valid for arbitrarily large amplitudes.

Note, also, that the velocity and frequency �17� do not
depend on the saturation parameter �. This is in contrast to
the stationary �v=0� soliton of Eqs. �5� and �6� obtained by
Khare et al. �34�. The soliton of Ref. �34� has its amplitude
and frequency uniquely determined by �.

III. TERMS BEYOND ALL ORDERS OF THE
PERTURBATION THEORY

A. Dispersion relation for linear waves

As X→−�, the series �7a� reduces to ��X�
=�n=0

� �n+1CneX. The convergence of the series ��n+1�n�X�
for all X would imply, in particular, the convergence of the
series ��n+1Cn. Therefore, if the series �7a� converged, the
solution ��X� would be decaying to zero as X→−�. How-
ever, although we have shown that the series ��n+1�n�X� is
asymptotic to all orders, it does not have to be convergent.
For instance, it is easy to see that the series cannot converge
for v=�=0 and any �; since the advance-delay equation �5�
is translation invariant, this would imply that we have con-
structed a family of stationary solitons with an arbitrary po-
sition relative to the lattice. This, in turn, would contradict
the well-established fact that the “standard” cubic DNLS
solitons can only be centered on a site or midway between
two adjacent sites �40� �that is, that the “standard” discreti-
zation of the cubic NLS equation is not exceptional �41��.
Thus, we expect that the perturbative solution �7a� satisfies
��X�→0 as �X�→� only for some special choices of v, �,
and �.

Can Eqs. �5� and �6� have a bounded solution despite the
divergence of the corresponding series ��n+1Cn? To gain
some insight into this matter, we linearize Eq. �5� about �
=0 and find nondecaying solutions of the form �=eiQX/�

where Q is a root of the dispersion relation

� = 2 cos�k + Q� + Qv . �18�

It is easy to check that there is at least one such harmonic
solution �i.e., Eq. �18� has at least one root� if v�0. These
harmonic waves can form a radiation background over which
the soliton propagates �as suggested by the numerics of
�20,21� and the analysis of a similar problem for the �4 kinks
in �36��. Being nonanalytic in �, such backgrounds cannot be
captured by any order of the perturbation expansion.

As we will show below, not only the wavenumbers but
also the amplitudes of the harmonic waves are nonanalytic in
�. This phenomenon was first encountered in the context of
the breather of the continuous �4 model, where Eleonskii et
al. �42� suggested that the radiation from the breather could
be exponentially weak. Segur and Kruskal �43,44� then de-
veloped the method of “asymptotics beyond all orders” to
demonstrate that, in the limit �→0, such radiation does exist.
We will use Segur and Kruskal’s method to measure the
magnitude of the radiation background of the traveling dis-
crete soliton.

Qualitatively, the fact that the radiation is not excited at
any order of the perturbation expansion is explained by the
fact that the soliton exists on the long length scale X,
whereas the radiation has the shorter scale X /�. To all orders,
the two are uncoupled.
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Using the relations �17�, we can rewrite Eq. �18� as

cosh � − cosQ
�sinh �/��Q − sinQ

= tan k . �19�

The left-hand side is plotted in Fig. 1. For �=0 it has minima
at multiples of 2	 where the curve is tangent to the horizon-
tal axis. For nonzero �, the minima of the curve are lifted off
the Q axis slightly. The minima with larger values of Q have
smaller elevations above the horizontal axis; i.e., the minima
come closer and closer to the Q axis as Q grows. We see
from the figure that for k�kmax

�1� , where kmax
�1� �0.22, there is

only one radiation mode. Note also that the left-hand side of
Eq. �19� is negative for negative Q; since we have assumed
that 0
k
	 /2, this implies that Eq. �19� cannot have nega-
tive roots.

B. Radiating solitons

Although we originally constructed the expansion �7a� as
an asymptotic approximation to a solution which is station-
ary in the frame of reference moving with the velocity v, it
can also represent an approximation to a time-dependent so-
lution ��X , t�. Here ��X , t� is related to �n�t�, the discrete
variable in Eq. �2�, by the substitution �3�:

�n�t� = ��X,t�eikn+i�t. �20�

The coefficients �n in the asymptotic expansion of ��X , t�
will coincide with the coefficients in the expansion of the
stationary solution ��X�=��n+1�n if the time derivatives �t�n

lie beyond all orders of � and hence the time evolution of the
free parameters k and � occurs on a time scale longer than
any power of �−1. Physically, one such solution represents a
traveling soliton slowing down and attenuating as the Cher-
enkov radiation left in its wake carries momentum and en-
ergy away from its core.

Substituting Eq. �20� into Eq. �2�, gives

i�t + �+eik + �−e−ik − �� − i�v�X +
2���2

1 + ����2
� = 0,

�21�

where � ±=��X±� , t�.
We consider two solutions of this equation which both

have the same asymptotic expansion �7a�, denoted �s�X , t�
and �u�X , t�, such that �s�X , t�→0 as X→ +� and �u�X , t�
→0 as X→−�. Since the difference ��s−�u is small
�lies beyond all orders of �� and since the solution �s can be
regarded as a perturbation of �u,  obeys the linearization of
Eq. �21� about �u to a good approximation—that is,

it + +eik + −e−ik − � − iv�X +
4��u�2 + 2� u

2 *

1 + ���u�2

+
2���u�2���u�2 + �u

2*�
�1 + ���u�2�2 = 0. �22�

Since �u=O���, we can solve Eq. �22� to leading order in �
by ignoring the last two terms in it; the resulting solutions
are exponentials of the form eiQX/�−i�t. We make a preemp-
tive simplification by setting �=0. �That � has to be set
equal to zero follows from matching these exponentials to
the far-field asymptotes of the stationary “inner” solution;
see Sec. III D below. Physically, �=0 implies that the trav-
eling pulse will only excite the radiation with its own �zero�
frequency in the comoving frame.� The leading-order solu-
tion of Eq. �22� is therefore

 = �
n

AneiQnX/� + O��1� , �23�

where Qn �n=1,2 , . . . � are the roots, numbered in order from
smallest to largest, of the dispersion relation �18�. �Recall
that since we have taken k in the interval �0,	 /2�, all the
roots Qn are positive.� For k�kmax

�1� �0.22, there is only one
root, Q1.

Higher-order corrections to the solution �23� can be found
by substituting the ansatz

 = �
n

An �1 + �f1
�n��X� + �2f2

�n��X� + ¯ � eiQnX/�

+ �
n

An
* ��2g2

�n��X� + �3g3
�n��X� + ¯ � e−iQnX/� �24�

into Eq. �22�, expanding the advance and delay terms
f1,2,. . .

�n� �X±��, g2,3,. . .
�n� �X±�� in Taylor series in �, and making

use of the asymptotic expansion �13� for �u. For instance, the
first few corrections are found to be

f1
�n��X� =

4i cos k

2 sin�k + Qn� − v
tanh X ,

g2
�n��X� =

2 cos k

� + vqn − 2 cos�k − Qn�
sech2 X . �25�

Since �u→0 as X→−�, it follows that �s→ as X→
−�, and hence, once we know the amplitudes An, we know
the asymptotic behavior of �s. We shall now employ the

ε = 0.5
ε = 0

Q
16π12π8π4π0

0.4

0.3

0.2

0.1

0

FIG. 1. The left-hand side of Eq. �19� for two values of �. The
root�s� Qn of the dispersion relation �18� are located where this
graph is intersected by a horizontal straight line with ordinate equal
to tan k.
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method of asymptotics beyond all orders to evaluate these
amplitudes.

C. “Inner” equations

Segur and Kruskal’s method allows one to measure the
amplitude of the exponentially small radiation by continuing
the solution analytically into the complex plane. The leading-
order term of �, ��cos k sech X, has singularities at X= i	

2
+ i	n, n=0, ±1, ±2, . . .. In the vicinity of these points, the
radiation becomes significant; the qualitative explanation for
this is that the sech function forms a sharp spike with a short
length scale near the singularity point, and hence there is a
strong coupling to the radiation modes, unlike on the real
axis. The radiation, which is exponentially small on the real
axis, becomes large enough to be measured near the singu-
larities.

We define a new complex variable y, such that �y is small
in absolute value when X is near the lowest singularity in the
upper half-plane:

�y = X −
i	

2
. �26�

The variables y and X are usually referred to as the “inner”
and “outer” variables, respectively—the transformation to y
effectively “zooms in” on the singularity at X= i	

2 . We also
define u�y����X� and w�y���*�X�. Continuing Eq. �5� to
the complex plane—i.e., substituting u�y� for ��X� and w�y�
for �*�X�—we obtain, in the limit �→0,

eiku�y + 1� + e−iku�y − 1� − 2 cos k u�y� − 2i sin k u��y�

+
2u2w

1 + �uw
= 0, �27a�

e−ikw�y + 1� + eikw�y − 1� − 2 cos k w�y� + 2i sin k w��y�

+
2w2u

1 + �wu
= 0. �27b�

Here we have used the fact that �→2 cos k and v→2 sin k
as �→0. Equations �27� are our “inner equations”; they are
valid in the “inner region” −��Re y��, Im y�0. �The
solution cannot be continued up from the real X axis past the
singularity at y=0.�

Solving the system �27� order by order, we can find solu-
tions in the form of a series in powers of y−1. Alternatively,
we can make the change of variables �26� in the asymptotic
expansion �13� and send �→0. This gives, for the first few
terms,

û = �cos k�−
i

y
+ tan k

1

2y2

+ 
1

3
�1 − � cos k� +

7

12
tan2 k� i

y3 + O�y−4� ,

�28a�

ŵ = �cos k�−
i

y
− tan k

1

2y2

+ 
1

3
�1 − � cos k� +

7

12
tan2 k� i

y3 + O�y−4� .

�28b�

We are using carets over u and w to distinguish the series
solution �28� from other solutions of Eq. �27� that will appear
in the next section. The asymptotic series �28� may or may
not converge. We note a symmetry û�−y�=−ŵ�y� of the
power-series solution.

D. Exponential expansion

In order to obtain an expression for the terms which lie
beyond all orders of y−1, we substitute �u ,w�= �û , ŵ�
+ ��u ,�w� into Eqs. �27�. Since û and ŵ solve the equations
to all orders in y−1, then provided �u and �w are small, they
will solve the linearization of Eqs. �27� about �û , ŵ� for large
�y�.

Formal solutions to the linearized system can be con-
structed as series in powers of y−1. Because û and ŵ are both
O�y−1�, the leading-order expressions for �u and �w as y
→� are obtained by substituting zero for û and ŵ in the
linearized equations. This gives

�u → �
n

Jn exp�iqny� ,

�w → �
n

Kn exp�− iqny� as y → � , �29�

where qn �n=0,1 ,2 , . . . �. are the roots of

cos�k + q� − cos k + q sin k = 0. �30�

Note that the roots qn with n�1 are given by the �→0 limits
of the roots of the dispersion equation �19�: qn=lim�→0Qn. In
addition, there is a root q0=0 which does not have a Q0
counterpart.

The full solutions �i.e., solutions including corrections to
all orders in y−1� will result if we use the full inverse-power
series �28� for û and ŵ; these solutions should have the form

�u = �
n

Kn�
m=1

�
dm

�n�

ym exp�− iqny� , �31a�

�w = �
n

Kn
1 + �
m=1

�
cm

�n�

ym �exp�− iqny� . �31b�

Note that we have excluded the terms proportional to eiqny

from this ansatz �i.e., set the amplitudes Jn to zero� as they
would become exponentially large on the real X axis. �One
can readily verify this by making the change of variables
�26� in Eq. �29�.� The coefficients c1

�n� ,c2
�n� , . . . and

d1
�n� ,d2

�n� , . . . are found recursively when the ansatz �31� is
substituted into the linearized equations and like powers of
y−1 collected. In particular, the first few coefficients are
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c1
�n� = −

2i cos k

sin�k + qn� − sin k
,

c2
�n� =

�cos�k + qn� − 2 cos k�cos k

�sin�k + qn� − sin k�2 �32a�

and

d1
�n� = 0, d2

�n� =
cos k

cos�k − qn� − cos k − qn sin k
, �32b�

where n=1,2 , . . ..
Having restricted ourselves to considering the linearized

equations for �u and �w, we have only taken into account the
simple harmonics in Eqs. �29� and �31�. Writing �u=�1U1
+�2U2+¯. and �w=�1W1+�2W2+¯, where � is an auxil-
iary small parameter �not to be confused with our “principal”
small parameter ��, substituting u= û+�u and w= ŵ+�w in
Eqs. �27�, and solving order-by-order the resulting hierarchy
of nonhomogeneous linear equations, we can recover all
nonlinear corrections to �u and �w. The �2 corrections will
be proportional to e−i�qn+qm�y; higher-order corrections will
introduce harmonics with higher combination wavenumbers.
Later in this section it will become clear that � is actually of

the order exp�−	Q1 /2�� �see Eq. �36� below�; hence, the
amplitudes of the combination harmonics will be exponen-
tially smaller than that of exp�−iq1y�.

Now we return to the object that is of ultimate interest to
us in this work—that is, to the function  of Sec. III B
representing the radiation of the moving soliton. We need to
match  to the corresponding object in the inner region. To
this end, we recall that =�s−�u, where �s and �u are two
solutions of the outer equation �5� which share the same
asymptotic expansion to all orders. In the limit �→0, the
corresponding functions

us�y,t� � �s�X,t�, ws�y,t� � �s
*�X,t� ,

uu�y,t� � �u�X,t�, wu�y,t� � �u
*�X,t� �33�

solve Eqs. �27� and share the same inverse-power expan-
sions. We express this fact by writing

us�y,t� � û�y�, ws�y,t� � ŵ�y� ,

uu�y,t� � û�y�, wu�y,t� � ŵ�y� .

Therefore, the difference us−uu �which results from the ana-
lytic continuation of the function � can be identified with
�u and ws−wu with �w. Continuing Eq. �24� and its complex
conjugate gives, as �→0,

us − uu = �
n

lim
�→0

An���exp�−
	Qn

2�
	
1 + O�1

y
	�exp�iqny�

− �
n

lim
�→0

An
*���exp�	Qn

2�
	
 2 cos k

� + vqn − 2 cos�k − qn�
1

y2 + O� 1

y3	�exp�− iqny� �34a�

and

ws − wu = �
n

lim
�→0

An
*���exp�	Qn

2�
	
1 + O�1

y
	�exp�− iqny�

− �
n

lim
�→0

An���exp�−
	Qn

2�
	
 2 cos k

� + vqn − 2 cos�k − qn�
1

y2 + O� 1

y3	�exp�iqny� . �34b�

�Here we have used Eq. �25�.� Matching Eq. �34a� to Eq.
�31a� and Eq. �34b� to Eq. �31b� yields then K0=0 and

lim
�→0

An���exp�−
	Qn

2�
	 = 0, �35a�

lim
�→0

An
*���exp�	Qn

2�
	 = Kn, �35b�

for n=1,2 , . . .. We note that Eq. �35a� follows from Eq.
�35b�, while the latter equation can be written, symbolically,
as

An��� → Kn
* exp�−

	Qn

2�
	 as � → 0. �36�

Our subsequent efforts will focus on the evaluation of the
constants Kn.

For k greater than kmax
�1� �approximately 0.22�, there is only

one radiation mode and therefore only one preexponential
factor, K1. For smaller k we note that the amplitude of the nth
radiation mode, An, is a factor of exp� 	

2� �Qn−Q1�� smaller
than A1, the amplitude of the first mode. Referring to Fig. 1,
it is clear that for n�3, the difference Qn−Q1 will be no
smaller than 	. As for the second mode, it becomes as sig-
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nificant as the first one only when k=O��2� in which case
�Q2−Q1� /�=O�1�. But in our asymptotic expansion of Sec.
II we assumed, implicitly, that k is of order 1 and so the case
of k=O��2� is beyond the scope of our current analysis.
Therefore, for our purposes all the radiation modes with n
�2 �when they exist� will have negligible amplitudes com-
pared to that of the first mode, provided K1 is nonzero and �
is small. For this reason, we shall only attempt to evaluate K1
in this paper.

E. Borel summability of the asymptotic series

Pomeau, Ramani, and Grammaticos �45� have shown that
the radiation can be measured using the technique of Borel
summation rather than by solving differential equations nu-
merically, as in Segur and Kruskal’s original approach. The
method has been refined by �among others� Grimshaw and
Joshi �46,47� and Tovbis et al. �48–51�, who have applied it
to difference equations. Most recently it has been applied to
differential-difference equations in the context of moving
kinks in �4 models �36�. This is the approach that we will be
pursuing here.

Expressing u�y� and w�y� as Laplace transforms

u�y� = �
�

U�p�e−pydp �37a�

and

w�y� = �
�

W�p�e−pydp , �37b�

where � is a contour extending from the origin to infinity in
the complex p plane, the inner equations �27� are cast in the
form of integral equations

f�p�U + � �f�p�U� � U � W + U � U � W = 0, �38a�

f�− p�W + � �f�− p�W� � W � U + W � W � U = 0, �38b�

where

f�p� = �cosh p − 1�cos k − i�sinh p − p�sin k .

The asterisk � denotes the convolution integral,

U�p� � W�p� = �
0

p

U�p − p1�W�p1�dp1,

where the integration is performed from the origin to the
point p on the complex plane, along the contour �. In deriv-
ing Eqs. �38�, we have made use of the convolution theorem
for the Laplace transform of the form �37�, where the inte-
gration is over a contour in the complex plane rather than a
positive real axis. The theorem states that

u�y�w�y� = �
�

�U�p� � W�p��e−pydp . �39�

The proof of this theorem is provided in Appendix A.
We choose the contour so that arg p→	 /2 as �p�→�

along �. In this case we have e−py→0 as �p�→� for all y

along any line −��Re y�� with Im y�0. Therefore, the
integrals in Eqs. �37� converge for all y along this line and
any bounded U�p� and W�p�.

The function U�p� will have singularities at the points
where f�p� vanishes while the sum of the double-convolution
terms in Eq. �38a� does not. Similarly, W�p� will have a
singularity wherever f�−p� vanishes �while the sum of the
double-convolution terms in Eq. �38b� does not�. Therefore,
U and W may have singularities at the points where

cosh p − 1 = ± i tan k �sinh p − p� , �40�

with the top and bottom signs referring to U�p� and W�p�,
respectively. The imaginary roots of Eq. �40� with the top
sign are at p=−iqn and those of Eq. �40� with the bottom sign
at p= iqn, where qn are the real roots of Eq. �30�. �We remind
the reader that all roots qn are positive.� The point p=0 is not
a singularity as both double-convolution terms in each line of
Eqs. �38� vanish here. There is always at least one pure
imaginary root of Eq. �40� �and only one if k�kmax

�1� , where
kmax

�1� �0.22�.
In addition, there are infinitely many complex roots. The

complex singularities of U �complex roots of the top-sign
equation in Eq. �40�� are at the intersections of the curve
given by

q =
cosh �

sin k
�1 − sin2 k� �

sinh �
	2

− cot k , �41a�

with the family of curves described by

q = k − arcsin� �

sinh �
sin k	 + 2	n, n = 1,2, . . . ,

�41b�

and at the intersections of the curve

q = −
cosh �

sin k
�1 − sin2 k� �

sinh �
	2

− cot k , �42a�

with the family of curves described by

q = k + arcsin� �

sinh �
sin k	 + 	�2n + 1� ,

n = − 2,− 3,− 4,… . �42b�

Here � and q are the real and imaginary part of p: p=�+ iq.
The curve �41a� looks like a parabola opened upwards, with
the vertex at �=q=0, and the curve �42a� like a parabola
opened downwards, with the vertex at �=0, q=−2 cot k. The
curves �41b� and �42b�, on the other hand, look like parabo-
las for small � but then flatten out and approach horizontal
straight lines as �→ ±�. �In compiling the list of these “flat”
curves in Eqs. �41b� and �42b�, we have taken into account
that the curve �41b� with n=0 does not have any intersec-
tions with the parabola �41a� and the curve �42b� with n=
−1 does not have any intersections with the parabola �42a�.�
As k is reduced, the vertex of the parabola �42a� moves down
along the q axis; the intersections of this parabola with the
“flat” curves �42b� approach, pairwise, the q axis. After col-

O. F. OXTOBY AND I. V. BARASHENKOV PHYSICAL REVIEW E 76, 036603 �2007�

036603-8



liding on the q axis, pairs of complex roots move away from
each other along it. �The parabola �41a� does not move as k
is reduced, but only steepens, which results in the singulari-
ties in the upper half-plane approaching the imaginary axis
but not reaching it until k=0.� In a similar way, the complex
singularities of W�p� move onto the imaginary axis as k is
decreased. In Sec. III E below we will use the fact that the
distance from any complex singularity to the origin is larger
than 2	; this follows from the observation that the closest
points of the curves �41b� and �42b� to the origin are their
intersections with the q axis. These are farther away than 2	
from the origin.

In addition to singularities at p=−iqn, the function U�p�
will have singularities at points p= iqn, n=1,2 , . . .. These are
induced by the cubic terms in Eq. �38a�; for instance, the
singularity at p= iq1 arises from the convolution of the term
proportional to p in U�U with the function W which has a
singularity at p= iq1. �That U�p� has singularities at p= iqn

can also be seen directly from Eq. �31a�.� Similarly, the func-
tion W�p� will have singularities at points p=−iqn, n
=1,2 , . . .. By virtue of the nonlinear terms there will also be
singularities at the “combination points” i�±qn±qm�,
i�±qn±qm±qj�, etc.

The formal inverse-power series �28�, which we can write
as

û�y� = �
�=0

�

��

�!

y�+1 , ŵ�y� = �
�=0

�

��

�!

y�+1 , �43�

result from the Laplace transformation of power series for
U�p� and W�p�:

U�p� = �
�=0

�

��p�, W�p� = �
�=0

�

��p�. �44�

The series �44� converge in the disk of radius q1, centered at
the origin, and hence can be integrated term by term only
over the portion of the contour � which lies within that disk.
However, by Watson’s lemma, the remaining part of the con-
tour makes an exponentially small contribution to the inte-
gral and the resulting series �43� are asymptotic as y→�.
The functions u�y� and w�y� defined by Eqs. �37� give the
Borel sums of the series û�y� and ŵ�y�.

Consider now some horizontal line in the inner region;
that is, let Im y�0 be fixed and Re y vary from −� to �. If
the integration contour � is chosen to lie in the first quadrant
of the complex p plane, the functions u�y� and w�y� gener-
ated by Eqs. �37� will tend to zero as Re y→ +� along this
line. Similarly, if it is chosen to lie in the second quadrant,
they will tend to zero as Re y→−�. Suppose there were no
singularities between two such contours; then the one could
be continuously deformed to the other without any singular-
ity crossings; i.e., they would generate the same solution
which, therefore, would decay to zero at both infinities. �That
is, the oscillatory tails in Eqs. �31� would have zero ampli-
tudes, Kn=0.� In general, however, U�p� and W�p� have sin-
gularities both on and away from the imaginary axis. In order
to minimize the number of singularities to be crossed in the
deformation of one contour to the other, we choose the con-

tours to lie above all singularities with nonzero real part.
�That this is possible, is shown in Appendix B.� Note also
that the imaginary part of the singularity grows faster than its
real part and hence arg p should tend to 	 /2 as �p�→� along
�; this was precisely our choice for the direction of the con-
tours � in the beginning of Sec. III E.

Let �s and �u be two contours chosen in this way, with �s
lying in the first quadrant and �u in the second quadrant. The
solutions u�y� and w�y� generated by Eqs. �37� with the con-
tour �s will tend to zero as Re y→� �with Im y�0 fixed�.
Hence they can be identified with solutions us and ws ob-
tained by the continuation of the outer solution �s which has
the same asymptotic behavior. Similarly, the solutions gener-
ated by Eqs. �37� with the contour �u coincide with solutions
uu and wu—like uu and wu, the solutions generated by Eqs.
�37� tend to zero as Re y→−� �with fixed Im y�0�.

Consider, first, solutions ws and wu. Since the contours �s
and �u are separated by singularities of W�p� on the positive
imaginary axis, they cannot be continuously deformed to
each other without singularity crossings and so the solution
ws does not coincide with wu, unless the residue at the sin-
gularity happens to be zero. If we deform �s to �s� and �u to
�u� as shown in Fig. 2, without crossing any singularities,
then the only difference between the two contours is that �s�
encircles the singularities, whereas �u� does not. Therefore,
the difference ws−wu can be deduced exclusively from the
leading-order behavior of W�p� near its singularities. There
can be two contributions to this difference: the first arises
from integrating around the poles and is a sum of residues,
while the second arises if the singularity is a branch point.

To find the singularity structure of the function W�p�, we
equate

ws − wu = �
�s�

W�p�e−pydp − �
�u�

W�p�e−pydp �45�

to the expansion �31b�. The first term in Eq. �31b�, e−iqny,
arises from the integration of a term �2	i�−1�p− iqn�−1 in

γsγ ′sγu

γ ′u

2iq1

iq1

Re p = κ

Im p = q

FIG. 2. The integration contours �s and �u used to generate the
solutions �us ,ws� and �uu ,wu�, respectively, via Eqs. �37�. The dots
are singularities of W�p�. Shown is the situation where the linear
dispersion relation �30� has only one real root, q1.
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W�p�. For such a term, the difference of the two integrals in
Eq. �45� reduces to an integral around a circle centered on
the point p= iqn:

1

2	i
� 1

p − iqn
e−pydp = res� e−py

p − iqn
,iqn .

The term y−me−iqyn in Eq. �31b�, with m=1,2 , . . ., arises from
the integration of a term

1

2	i

�p − iqn�m−1

�m − 1�!
ln�p − iqn�

in W�p�. This time, p= iqn is a branch point. After going
around this point along the circular part of �s�, the logarithm
increases by 2	i and the difference between the integrals in
Eq. �45� is given by

1

�m − 1�!�C

�p − iqn�m−1e−pydp =
e−iqny

�m − 1�!�0

�

zm−1e−zydz ,

where C is the part of �s� extending from p= iqn to infinity.
This equals exactly y−me−iqny.

Thus, in order to generate the full series �31b� we must
have

W�p� =
1

2	i
�

n

Kn
 1

p − iqn
+ �

m=1

�
cm

�n�

�m − 1�!
�p − iqn�m−1

�ln�p − iqn�� + Wreg�p� , �46�

where Wreg denotes the part of W which is regular at p= iqn,
n=1,2 , . . .. By the same process, matching us−uu to �u in
Eq. �31a� yields

U�p� =
1

2	i
�

n

Kn�
m=1

�
dm

�n�

�m − 1�!
�p − iqn�m−1 ln�p − iqn�

+ Ureg�p� . �47�

The solution to Eqs. �38� is nonunique; for instance, if
�U�p� ,W�p�� is a solution, then so is
�epy0+�0U�p� ,epy0−�0W�p�� with any complex y0 and �0. Also,
if �U�p� ,W�p�� is a solution, �W�−p� ,U�−p�� is another one.
We will impose the constraint

U�p� = W�− p�; �48�

this constraint is obviously compatible with Eqs. �38�. It is
not difficult to see that the reduction �48� singles out a
unique solution of Eqs. �38�. The motivation for imposing
the constraint �48� comes from the symmetry û�−y�=−ŵ�y�
of the power-series solution of Eq. �27�. Using this symmetry
in Eq. �43�, we get ��= �−1���� and then Eq. �44� implies Eq.
�48�.

In view of Eq. �48�, the singularities of U�p� in the upper
half-plane are singularities of W�p� in the lower half-plane,
which fall within Wreg�p�, and vice versa. Thus we have,
finally,

W�p� =
1

2	i
�

n

Kn

p − iqn
+

1

2	i
�

n

Kn�
m=1

�
1

�m − 1�!

��cm
�n��p − iqn�m−1 ln�p − iqn�

− �− 1�mdm
�n��p + iqn�m−1 ln�p + iqn�� + W̃reg�p� ,

�49�

where W̃reg�p� is regular at p= ± iqn. We also mention an
equivalent representation for Eq. �49� which turns out to be
computationally advantageous:

W�p� =
1

2	i
�

n

Kn�
m=0

�

D−m
 cm
�n�

p − iqn
−

�− 1�mdm
�n�

p + iqn
� + W̌reg�p� .

�50�

Here D−1 is an integral map:

D−1f�p� � �
0

p

f�p1�dp1;

the notation D−mf�p� should be understood as

D−mf�p� � �
0

p

dp1�
0

p1

dp2�
0

p2

dp3 ¯ �
0

pm−1

dpmf�pm� .

We have also introduced c0
�n�=1 and d0

�n�=0 for economy of
notation. The only difference between Eqs. �49� and �50� is
that the double-sum term on the right-hand side of Eq. �50�
includes some terms which are regular at p= ± iqn, whereas

in Eq. �49�, all regular terms are contained in W̃reg�p�.
The residues Kn at the poles of W�p� are known as the

Stokes constants. The leading-order Stokes constant K1 can
be related to the behavior of the coefficients in the power-
series expansion of W�p�. Indeed, the coefficients in the
power series �44� satisfy

�� → K1�
m=0

�
cm

�1� + �− 1��dm
�1�

2	q1�iq1��−m

�� − m�!
�!

as � → � . �51�

This is obtained by expanding the singular part of the expres-
sion �50� in powers of p. �Coefficients of the regular part
become negligible in the limit �→� compared to those of
the singular part.� Note that we have ignored singularities
with nonzero real part and singularities on the imaginary axis
other than at p= ± iq1. The reason is that all these singulari-
ties are farther away from the origin than the points ±iq1 �in
particular all complex singularities are separated from the
origin by a distance greater than 2	�, and their contribution
to �� becomes vanishingly small as �→�. We have also
neglected singularities at the “combination points” because
of their exponentially small residues. The coefficients �� can
be calculated numerically; once they are known, it follows
from �51� that

K1 = 2	q1 lim
�→�

�iq1���� �52�

�where we have recalled that c0
�1�=1 and d0

�1�=0�.
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We now turn to the numerical calculation of the coeffi-
cients ��.

F. Recurrence relation

To make our forthcoming numerical procedure more ro-
bust, we normalize the coefficients in the power series �44�
by writing

�� = − i
��

�iq1�� . �53�

Substituting the expansions �44� with Eq. �53� as well as the
constraint �48� into either of equations �38� and equating
coefficients of like powers of p yields the following recur-
rence relation for the numbers �n �n�0�:

�
m=0

n
q1

m�n−m

�m + 2�!
Rm

=
1

�n + 2��n + 1� �
m=0

n 
�n−m + ��
j=2

n−m
q1

j �n−m−j

j!
R j�

���
j=0

m

�− 1�m−j�m−j� j
j!�m − j�!

m!
	m!�n − m�!

n!
.

�54�

Here

Rm = ��− 1�m/2 cos k , for m even,

�− 1��m−1�/2 sin k , for m odd.


Solving Eq. �54� with n=0 gives �0=�1−c2. Thereafter it
can be solved for each member of the sequence ��n� in terms
of the preceding ones, and thus each �n can be calculated in
turn. �Since all the coefficients in the recurrence relation �54�
are real, the sequence ��n� turns out to be a sequence of real
numbers.�

Once the sequence ��n� has been generated, expression
�52� can be used to calculate the Stokes constant. We have

K1 = − 2	iq1�� �55�

for sufficiently large �. Unfortunately, the convergence of the
sequence ��n� is slow and thus the above procedure is com-
putationally expensive. The convergence can be accelerated
by expanding Eq. �51� in powers of small 1 /�:

�� =
iK1

2	q1

1 + iq1

c1
�1�

�
− q1

2c2
�1� + �− 1��d2

�1�

�2 + O� 1

�3	� ,

whence

K1 = − 2	iq1��
1 − iq1
c1

�1�

�

+ q1
2c2

�1� − �c1
�1��2 + �− 1��d2

�1�

�2 + O� 1

�3	� . �56�

According to Eq. �56�, Eq. �55� gives K1 with a relatively
large error of order 1 /�. On the other hand, a two-term ap-
proximation

K1 = − 2	iq1���1 − iq1
c1

�1�

�
	 �57�

is correct to O�1/�2�. More precisely, the relative error asso-
ciated with the answer �57� is given by

E
K1

= q1
2c2

�1� − �c1
�1��2 + �− 1��d2

�1�

�2 . �58�

In our calculations, we set E /K1=10−5. Since c1
�1�, c2

�1�, and
d2

�1� are known constants �given by Eqs. �32a� and �32b��, Eq.
�58� tells us what � we should take—i.e., how many mem-
bers of the sequence ��n� we should calculate in order to
achieve the set accuracy. Figure 3 illustrates the convergence
of the approximate values of K1 calculated using Eqs. �55�
and �57� as � is increased. Note the drastic acceleration of
convergence in the latter case.

Figure 4�a� shows the calculated Stokes constant as a
function of k for various values of the saturation parameter
�. First of all, K1�k� does not have any zeros in the case of
the cubic nonlinearity ��=0�. This means that solitons of the
cubic one-site discrete NLS equation �Eq. �2� with �=0�
cannot propagate without losing energy to radiation. For �
=3 the Stokes constant does have a zero, but at a value of k
smaller than kmax

�1� �where kmax
�1� �0.22=0.07	�. Since higher

radiation modes do exist in this range of k, there will still be
radiation from the soliton—unless the “higher” Stokes con-
stants K2�k�, K3�k� , . . . happen to be zero at the same value of
k. Finally, for �=4 the zero is seen to have moved just above
kmax

�1� and for �=6 it has an even higher value. There are no
Q2 ,Q3 , . . .. radiations for these k; hence, the zeros of K1�k�
define the carrier wavenumbers at which the soliton
“slides”—i.e., travels without emitting any radiation. Equa-
tion �17� then gives the corresponding sliding velocities, for
each �.

Figure 4�b� shows the Stokes constant K1�k� for higher
values of the parameter �. For �=12 a second zero of the
Stokes constant has appeared, while for �=25, the function

�
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FIG. 3. Convergence of the sequence on the right-hand side of
Eq. �55� �dashed line� and the “accelerated” sequence defined by
the right-hand side of Eq. �57� �solid line�. Shown are the �th ap-
proximations to the Stokes constant K1 �the �th members of the
sequences �55� and �57�� divided by i to get a real value. In this
plot, �=0 and k=0.5.
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K1�k� has three zeros. As � is increased, the existing zeros
move to larger values of k while new ones emerge at the
origin of the k axis.

G. Radiation waves

For not very large �X�, the solution �s is close to the lo-
calized pulse found by means of the perturbation expansion
in Sec. II. As X→ +�, it tends to zero, by definition, while
the X→−� asymptotic behavior is found from �s=�u+.
Here the solution �u decays to zero as X→−� and hence �s
approaches the oscillatory wave form  given by Eqs. �24�,
�25�, and �36�:

�s�X� → �
n

Kn
*e−	Qn/2�

�
1 + �
4i cos k tan X

2 sin�k + Qn� − v
+ O��2��eiQnX/�

�59�

as X→−�. Equation �59� describes a radiation background
over which the soliton is superimposed. As we have ex-
plained, we can ignore all but the first term in the sum.

To determine whether the radiation is emitted by the soli-
ton or being fed into it from outside sources, we consider a

harmonic solution �=eiQX/�−i�t of the linearized equation
�21�; the corresponding dispersion relation is

��Q� = − 2 cos�k + Q� + � − Qv .

The radiation background  consists of harmonics with �
=0 and Q=Qn where Qn are roots of Eq. �18�. The group
velocities of these harmonic waves are given by

���Qn� = 2 sin�k + Qn� − v . �60�

The Qn’s are zeros of the function ��Q�, and the group
velocities are the slopes of this function at its zeros; thus, the
group velocities ���Q1�, ���Q2� , . . ., have alternating signs.
The first one, which is the only one that concerns us in this
work, must be negative. Indeed, the value

��0� = − 2 cos k + � = 2 cos k�cosh � − 1�

is positive, and hence the slope of the function ��Q� as it
crosses the Q axis at Q1�0 is negative. Therefore, the first
radiation mode, extending to −�, carries energy away from
the soliton.

The even-numbered radiation modes �where present� in
our asymptotic solution �59� have positive group velocities
and hence describe the flux of energy fed into the system at
the left infinity. A more interesting situation is obviously the
one with no incoming radiation; the corresponding solution
is obtained by subtracting off the required multiple of the
solution to the linearized equation—e.g., eiQ2X/�. One would
then have a pulse leaving the odd modes in its wake and
sending even modes ahead of it.

If the first Stokes constant K1�k� has a zero at some k
=k1 while Q1 is the only radiation mode available �as hap-
pens in our saturable model with � greater than approxi-
mately 4�, then according to Eq. �59�, the radiation from the
soliton with the carrier-wave wavenumber k1 is suppressed
completely.

IV. TIME EVOLUTION OF A RADIATING SOLITON

A. Amplitude–wavenumber dynamical system

To find the radiation-induced evolution of the traveling
soliton, we use conserved quantities of the advance-delay
equation associated with Eq. �2�. In the reference frame mov-
ing at the soliton velocity v this equation reads

i�t + ��x + 1,t� + ��x − 1,t� − iv�x +
2���2�

1 + ����2
= 0.

�61�

The discrete variable �n�t� in Eq. �2� is related to the value
of the continuous variable ��x , t� at the point x=n−vt:
�n�t�=��n−vt , t�. For future use, we also mention the rela-
tion between ��x , t� and the corresponding solution of Eq.
�21�:

��x,t� = ��X,t�eik�x+vt�+i�t. �62�

We first consider the number of particles integral:
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FIG. 4. The Stokes constant K1 for various values of �. Note the
logarithmic scale on the vertical axis. The downward spikes extend
all the way to −�; hence, each spike corresponds to a zero crossing.
Each panel shows only a portion of the full range 0
k
	 /2; there
are no additional zero crossings in the part which is not shown.
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N = �
a

b

���2dx .

Multiplying Eq. �61� by �*, subtracting the complex conju-
gate and integrating yields the rate of change of the integral
N:

i
dN

dt
= �

a−1

a

��+�* − c.c.�dx + �
b

b+1

��−�* − c.c.�dx +� iv���2�
a

b

.

�63�

In Eq. �63�, �±���x±1, t� and c.c. stands for the complex
conjugate of the immediately preceding term. The integration
limits a�0 and b�0 are assumed to be large ��a� ,b��−1�
but finite; for example, one can take a ,b=O��−2�.

Consider the soliton moving with a positive velocity and
leaving radiation in its wake. This configuration is described
by the solution �s of Eq. �21�; the corresponding solution of
Eq. �61� has the asymptotic behavior �s→0 as x→ +�. Sub-
stituting the leading-order expression �23� for the soliton’s
radiation tail into Eq. �62� yields the asymptotic behavior at
the other infinity:

�s�x,t� → �
n

An�1 + O����ei�k+Qn�x+i��+kv�t as x → − � .

�64�

Since, as we have explained above, the Q1 radiation is domi-
nant, it is sufficient to keep only the n=1 term in �64�.

Substituting �64� into �63� and evaluating the integral over
the region �a−1,a� in the soliton’s wake, we obtain

dN

dt
= �K1�2e−	Q1/� �2 sin�k + Q1� − v� , �65�

where we have used Eq. �36�. Note that �2 sin�k+Q1�−v� is
the group velocity of the first radiation mode, ���Q1�,
which, as we have established, is negative; hence, Ṅ
0.

We now turn to the momentum integral,

P =
i

2
�

a

b

��x
*� − �x�

*�dx .

Multiplying Eq. �61� by �x
*, adding its complex conjugate,

and integrating gives the rate equation

dP

dt
= �

a−1

a

��+�x
* + c.c.�dx − �

b

b+1

��−�x
* + c.c.�dx

+ � i

2
���t

* − �*�t��
a

b

−� ��+�*��
a−1

b

−� ��−�*��
a

b+1

− 
 2

�
���2 −

2

�2 ln�1 + ����2��
a

b

. �66�

Evaluating the right-hand side of Eq. �66� similarly to the
way we obtained Eq. �65� and substituting Eq. �18� for �
produces

dP

dt
= �K1�2e−	Q1/��k + Q1��2 sin�k + Q1� − v� . �67�

Using the leading-order term of the perturbative solution
�13� and Eq. �62�, we can express N and P via � and k:

N = 2� cos k + O��2� ,

P = 2k� cos k + O��2� .

In calculating N and P we had to integrate from X=�a to
X=�b. Since the integrands decay exponentially and since
a�0 and b�0 were assumed to be much larger than �−1 in
absolute value, it was legitimate to replace these limits with
−� and �, respectively. The error introduced in this way is
exponentially small in �.

Taking time derivatives of N and P above and discarding
�1 corrections to �0 terms, we deduce that

�̇ =
Ṅ + tan k�Ṗ − kṄ�

2 cos k
,

k̇ =
Ṗ − kṄ

2� cos k
.

Finally, substituting for Ṅ and Ṗ from Eqs. �65� and �67�, we
arrive at the dynamical system

�̇ = �K1�k��2e−	Q1/� ���Q1�
1 + Q1 tan k

2 cos k
, �68a�

k̇ = �K1�k��2e−	Q1/� ���Q1�
Q1

2� cos k
, �68b�

where the group velocity ���Q1�=2 sin�k+Q1�−v, with v
=2�sinh � /��sin k, and Q1=Q1�� ,k� is the smallest root of
Eq. �19�.

B. Soliton’s deceleration and sliding velocities

The vector field �68� is defined for k�kmin
�1� , where kmin

�1� is
the value of k for which the roots Q1 and Q2 merge in Fig. 1
�i.e., the smallest value of k for which the roots Q1 and Q2

still exist�. When k=kmin
�1� , the group velocity ���Q1� be-

comes equal to zero; therefore, the equation k=kmin
�1� ��� de-

fines a line of �nonisolated� fixed points of the system �68�.
Assume, first, that the saturation parameter � is such that
K1�k� does not vanish for any k. For k�kmin

�1� , the factor
���Q1� in Eq. �68b� is negative; since Q1 and cos k are

positive for all 0�k
	 /2, the derivative k̇ satisfies k̇
0 for
all times. Hence, all trajectories are flowing towards the line
k=kmin

�1� ��� from above. It is worth noting that the derivative �̇
is also negative and that the k axis is also a line of noniso-
lated fixed points. However, no trajectories will end there as
follows from the equation

d�

dk
= �
tan k +

1

Q1�k,��� ,

which is a consequence of Eqs. �68a� and �68b�.
Representative trajectories are plotted in Fig. 5�a�. Since

kmin
�1� �����2 /4	 is very small for small �, the line k=kmin

�1� ���
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is practically indistinguishable from the horizontal axis.
Therefore, we can assert that, to a good accuracy, k→0 as
t→�. This means that the soliton stops moving—and stops
decaying at the same time.

For k smaller than kmin
�1� , the vector field �68� is undefined

and we cannot use it to find out what happens to the soliton
after k has reached kmin

�1� . The reason for this is that the soliton
stops radiating at the wavenumber Q1 as k drops below kmin

�1� .
In fact our analysis becomes invalid as soon as k becomes
O��2�—i.e., even before k reaches kmin

�1� —because we can no
longer disregard the n=2 radiation here. At the qualitative
level it is obvious, however, that the parameter k should con-
tinue to decay all the way to zero, in a cascade way. First, the
n=2 radiation will become as intense as the n=1 mode when
k approaches �2 /4	. Subsequently—i.e., for k smaller than
�2 /4	—the n=3 harmonic will replace the radiation with the
wavenumbers Q1 and Q2 as a dominant mode. The n=4
mode will become equally intense near k=kmin

�2� ��2 /8	; as k
drops below �2 /8	, both Q3 and Q4 will cede to Q5 and so
on.

If � is such that the Stokes constant K1�k� vanishes at one
or more values of k, the system has one or more lines of
nonisolated fixed points, k=ki. The corresponding values of
v, v=vi����2�sinh � /��sin ki, define the sliding velocities of
the soliton—i.e., velocities at which the soliton moves with-

out radiative friction. One such velocity is shown by the
dashed line in Fig. 5�b�. The fixed points �� ,ki� are semi-
stable; for k above ki, the flow is towards the line k=ki, but
when k is below ki, the flow is directed away from this

straight line �see Fig. 5�b��. Since both �̇ and k̇ are negative,
the soliton’s velocity v=2�sinh � /��sin k will generally be
decreasing—until it hits the nearest underlying sliding veloc-
ity vi and locks on to it. The ensuing sliding motion will be
unstable; a small perturbation will be sufficient to take the
soliton out of the sliding regime after which it will resume its

radiative deceleration. However, since k̇ is proportional to
the square of the Stokes constant and not to K1�k� itself,
small perturbations �k will be growing linearly, not exponen-
tially, in t. As a result, the soliton may spend a fairly long
time sliding at the velocity vi. It is therefore not unreasonable
to classify this sliding motion as metastable.

We conclude that the soliton becomes pinned �i.e., k→0
and so v→0� before it has decayed fully �i.e., before the
amplitude � has decreased to zero�. The exponential depen-

dence of �̇ and k̇ on 1/� implies that tall, narrow pulses will
be pinned very quickly while short, broad ones will travel for
a very long time before they have slowed appreciably. Next,
if � is such that there is one or more sliding velocity avail-
able in the system, and if the soliton is initially moving faster
than some of these, its deceleration will be interrupted by
long periods of undamped motion at the corresponding slid-
ing velocities.

It is worth reemphasizing here that if the amplitude � is
small, then even if the soliton is not sliding, its deceleration
will be so slow that it will spend an exponentially long time
traveling with virtually unchanged amplitude and speed. The
deceleration rate −v̇ /v is shown in Fig. 6 as a function of the
soliton’s velocity v for fixed amplitude �. Note that the decay
rate drops, exponentially, as the velocity is decreased; this
drop is due to the exponential factor e−	Q1/� in Eq. �68�. As
the velocity v �and hence the wavenumber k� decreases, the
root Q1�� ,k� grows towards the limit value of approximately
2	 �see Fig. 1�. This variation in Q1 is amplified by the
division by small � and exponentiation in e−	Q1/�.

(a)

(b)

0.05 0.15 0.25 0.35

FIG. 5. The phase portrait of the system �68� in the case �a�
where the Stokes constant K1�k� does not have zeros and �b� where
K1�k� has one zero. In �b�, the dashed line is the line of nonisolated
fixed points k=k1. Note that in �b�, the phase portrait has been
replotted on the �� ,v� plane; hence, the dashed line gives the value
of the sliding velocity for each value of �. In �a�, �=0; in �b�, �
=6.

FIG. 6. The soliton’s decay rate as a function of its velocity, for
fixed �=0.1. �Here �=0.� In the inset, the same curve is replotted
using a logarithmic scale on the vertical axis.
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V. CONCLUDING REMARKS

A. Summary

In this paper, we have constructed the moving discrete
soliton of the saturable NLS Eq. �2� as an asymptotic expan-
sion in powers of its amplitude. The saturable nonlinearity
includes the cubic NLS as a particular case �for which �
=0�. Our perturbation procedure is a variant of the Lindstedt-
Poincaré technique where corrections to the parameters of
the solution are calculated along with the calculation of the
solution itself. Although the resulting asymptotic series �13�
for the soliton is generally not convergent, the associated
expansions for its frequency and velocity sum up to exact
explicit expressions �17�.

From the divergence of the asymptotic series �13� it fol-
lows, in particular, that the traveling discrete soliton does not
decay to zero at least at one of the two infinities. Instead, the
soliton approaches, as X→� or X→−�, an oscillatory reso-
nant background �23� where the amplitudes An of its con-
stituent harmonic waves lie beyond all orders of �. For the
soliton moving with a positive velocity and approaching zero
as X→�, the oscillatory background at the left infinity rep-
resents the Cherenkov radiation left in the soliton’s wake. To
evaluate the amplitudes of the harmonic waves arising as X
→−�, we have continued the radiating soliton into the com-
plex plane, where it exhibits singularities. We then matched
the asymptotic expansion �34� of the background near the
lowest singularity on the imaginary X axis to the far-field
asymptotic expansion �31� of the background solution of the
“inner” equation—i.e., of the advance-delay equation
“zoomed in” on this singularity. The asymptotic expansions
here are in inverse powers of the zoomed variable, y. The
amplitudes of the radiation waves were found to be exponen-
tially small in �, with the preexponential factors �the so-
called Stokes constants� being dependent only on the soli-
ton’s carrier-wave wavenumber. Representing solutions to
the inner equation as Borel sums of their asymptotic expan-
sions, the Stokes constants can be related to the expansion
coefficients; we have calculated these coefficients numeri-
cally, using algebraic recurrence relations.

The upshot of the calculation of the leading Stokes con-
stant K1 is that in the case of the cubic nonlinearity �i.e., for
�=0�, K1�k� does not vanish for any k. This means that the
cubic discrete soliton cannot “slide”—i.e., cannot move
without radiative friction. The saturable solitons, on the other
hand, can slide—provided the saturation parameter � is large
enough. This is because, for a sufficiently large �, the Stokes
constant K1�k� is found to have one or more zeros k1 ,k2 , . . ..
Since the soliton with wavenumber k�0.22 can have no
higher-order resonances, those zeros which satisfy ki�0.22
do define the wavenumbers at which sliding motion occurs.
For each value of the soliton’s amplitude �, the formula �17�
then gives the sliding velocities v�ki ,��.

The calculation of asymptotics beyond all orders is useful
not only for determining the sliding velocities. Knowing the
radiation amplitudes has allowed us to derive a two-
dimensional dynamical system �68� for the soliton’s param-
eters. Trajectories of this dynamical system describe the evo-
lution of the soliton traveling at a generic speed. The

evolution turns out to be simple: If � is such that the Stokes
constant K1�k� does not vanish anywhere in the region k
�0.22, the soliton decelerates, although very slowly. Even-
tually it becomes pinned to the lattice with a decreased but
finite amplitude. However, if � is such that there are sliding
velocities in the system and if the soliton starts its motion
with the velocity higher than some of these, then, although it
will finally become pinned to the lattice, its deceleration will
be interrupted by long periods of metastable sliding motion
at these isolated velocities.

B. Concluding remarks

It is interesting to tie up the above results with our previ-
ous work on exceptional discretizations of the �4 model �36�.
In that case we discovered that for some exceptional models
�in which the stationary soliton possesses an effective trans-
lational symmetry�, sliding velocities, at which the radiation
disappears, do exist. The fact that all these models involve a
complicated nonlocal discretization of the nonlinearity leads
one to wonder whether the nonlinearity has to be discretized
nonlocally in order for sliding solitons to exist. This question
is answered—negatively—by our present work which gives
a counterexample of a simple, local, and physically moti-
vated nonlinearity supporting sliding solitons.

A remaining open issue is whether exceptionality of the
system is a prerequisite for the existence of sliding solitary
waves. Indeed, we have yet to encounter a nonexceptional
discrete system permitting sliding motion.

We conclude this section by placing our results in the
context of earlier studies of discrete solitons.

Moving solitons in the cubic DNLS equation have previ-
ously been studied by Ablowitz, Musslimani, and Biondini
�13� �among others�, using a numerical technique based on
discrete Fourier transforms as well as perturbation expan-
sions for small velocities. As we have done, these authors
suggest that sliding �radiationless� solitons may not exist.
They also observe, with the aid of numerical simulations,
that strongly localized pulses are pinned quickly to the lat-
tice, while broader ones are more mobile—results which are
in agreement with ours.

Feddersen and co-workers �7,8� have studied the bifurca-
tion of periodic traveling waves from constant solutions in
the cubic DNLS equation, using numerical path-following
techniques. They find that the paths terminate when the soli-
ton’s amplitude reaches a certain limit value, and in the light
of our results it seems likely that this is the point at which the
radiation becomes large enough to have an effect on the nu-
merics.

Solitary waves which decay to constant values at the spa-
tial infinities, despite the fact that the generic asymptotic
behavior in the underlying model is oscillatory, are com-
monly referred to as embedded solitons. An example is given
by the sliding solitons reported in this paper as well as the
sliding kinks of �36�; both types of solitary waves propagate
without exciting the resonant background oscillations. Em-
bedded solitons have been studied for some time in continu-
ous systems �52�, but their history in lattice equations is
younger. Recently, Malomed and co-workers have consid-
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ered certain lattice equations with next-to-nearest-neighbor
couplings and shown �by means of explicit solutions� that
both stationary �53� and moving �54� embedded solitons ex-
ist. Stationary embedded solitons in discrete waveguide ar-
rays have also been analyzed by Yagasaki, Champneys, and
Malomed �55�.

Finally, while preparing the revised version of this paper,
we learned that Melvin et al. have obtained results very simi-
lar to ours. Using a combination of intuitive arguments and
numerical computations, they have found sliding solitons for
certain values of the parameters of a saturable DNLS model
�56�.
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APPENDIX A: CONVOLUTION THEOREM FOR THE
LAPLACE TRANSFORM IN THE COMPLEX PLANE

This appendix deals with the convolution property of the
modified Laplace transform of the form �37�, where the in-
tegration is along an infinite contour in the complex plane
rather than the positive real axis. In the context of asymptot-
ics beyond all orders, this transform was pioneered by Grim-
shaw and Joshi �46�. Since no proof of the convolution result
�39� is available in the literature and since it requires a non-
trivial property �concavity� of the integration contour, we
produce such a proof here.

We wish to show that

�
�

e−pzF�p�dp�
�

e−p�zG�p��dp�

= �
�

e−pz
�
0

p

F�p1�G�p − p1�dp1�dp , �A1�

where �0
p stands for an integral along the curve � from the

origin to the point p on that curve. We assume that the curve
� extends from the origin to infinity on the complex plane,
lies in its first quadrant �Re p�0, Im p�0�, is described as a
graph of a single-valued function Im p= f�Re p� �i.e., never
turns back on itself�, and is concave-up everywhere:

d2f

d�Re p�2 � 0 for p on � .

We also assume that the function G�p� is analytic in the
region between the contour � and the imaginary axis.

We begin by writing the left-hand side of Eq. �A1� as

�
�
�

�

e−�p+p��zF�p�G�p��dp�dp

= �
�

F�p�
�
�p

e−rzG�r − p�dr�dp , �A2�

where r= p�+ p. The curve �p is the path traced out by r as p�
traces out the curve �, for a given p �which also lies on
��—this is depicted in Fig. 7. The path �p is the same as the
path � but translated from the origin to the point p.

For each given p we deform the path �p so that it now lies
on �, still starting at the point p. We call this deformed path
�p�. The point r− p= p�, which lay on the path � before the
deformation, will now move inside the region bounded by �
�i.e., the region to the left of ��, since all points on �p� lie
inside the region bounded by �p. This follows from the fact
that the path �p is concave-up. The point r− p will, however,
stay to the right of the imaginary axis, since after the defor-
mation, all points r on �p� lie to the right of the point p. This
follows from the fact that the curve � never turns back on
itself. Since G�p�� is analytic for all p� between the imagi-
nary axis and �, the value of the integral �A2� will not be
affected by the deformation. �In the particular case of the
functions U�p� and W�p� considered in Sec. III E, we have
deliberately chosen the contours of integration so that the
analyticity condition is satisfied.�

After the deformation, both integrals in Eq. �A2� follow
the path �, with the inner one starting at the point p. By
parametrizing the path � it is now straightforward to change
the order of integration and end up with the desired result
�A1�.

The argument holds, with the obvious modifications, for
paths in the second quadrant.

APPENDIX B: PROOF THAT SINGULARITIES DO NOT
ACCUMULATE TO THE IMAGINARY AXIS

The roots of Eq. �40� with the top and bottom signs give
singularities of U�p� and W�p�, respectively. Our aim here is

p

Re p

Im p

γ

Γ′
p

Γp

FIG. 7. Deformation of the integration contour �p to �p�.
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to show that the integration contours �u and �s in Sec. III E
can be chosen to lie above all the complex singularities—i.e.,
that singularities of U�p� and W�p� do not accumulate to the
imaginary axis.

The roots of Eq. �40� are zeros of the functions F�±p�,
where

F�p� � cosh p − 1 − i tan k�sinh p − p� . �B1�

The imaginary zeros of F�p� are at p=−iqn, where qn are the
real roots of Eq. �30�. We let N denote the number of these
imaginary zeros; for k�0, N is finite. We recall that all qn
are positive; hence, all N imaginary zeros of F�p� are on the
negative imaginary axis and all N zeros of F�−p� on the
positive imaginary axis.

Let � and q be the real and imaginary part of p: p=�
+ iq. We let D denote the rectangular region in the complex-
p plane bounded by the vertical lines �= ±� and horizontal
lines q=�1/2 and q=Q, where � is small and Q is large
enough for the region to contain all N zeros of F�−p� on the
positive imaginary axis. By the argument principle, the total
number of �complex� zeros of the function F�−p� in the re-
gion D is given by �2	�−1 times the variation of its argument
�i.e., its phase� along the boundary of D. In a similar way,
one may count the number of zeros of the function F�p� in
D.

We have

tan arg F�±p� =
sinh � sin q � tan k�sinh � cos q − ��

cosh � cos q − 1 ± tan k�cosh � sin q − q�
.

Points on the vertical line �=� satisfy

tan arg F�±p� � − �
d

dq
ln�1 − cos q ± tan k�q − sin q�� .

�B2�

Consider, first, the case of the bottom sign in Eq. �B2�. The
expression between the bars in �B2� crosses through zero N
times as the line �=� is traced out. Each time zero is
crossed, the logarithmic derivative in �B2� jumps from −� to
+� and the argument of F�−p� increases by 	 as we move
from one crossing to the next one. The net increase of the
argument as the line �=� is traversed from its bottom to the
top is N	. In the case of the top sign in �B2�, on the other
hand, the expression in �¯� never crosses through zero and
hence the total increment of the argument of F�p� is zero.

As we move along the vertical line �=−� from top to
bottom, the argument of F�−p� increases by another N	
while the argument of F�p� does not acquire any increment.
Since there are no zero crossings on the horizontal segments,
the net change of the argument of F�−p� along the boundary
of D is 2N	 while the total increment of arg F�p� is zero.
Therefore F�−p� has only N zeros in the region D �and they
all lie on the imaginary axis� while the function F�p� has no
zeros in D. This implies that complex singularities of U�p�
and W�p� cannot accumulate to the positive imaginary axis.
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